
On the extension of the general theorem in the dynamics of correlations to the statistical

mechanics of large systems evolving in time dependent external fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 2595

(http://iopscience.iop.org/0305-4470/21/11/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen 21 (1988) 2595-2616. Printed in the UK 

On the extension of the general theorem in the dynamics of 
correlations to the statistical mechanics of large systems 
evolving in time dependent external fields 

V Skarkat and P V CoveneySQII 
+ Department of Theoretical Chemistry, University of Oxford, Oxford OX1 3TG, UK and 
Institute of Physics, PO Box 57, 11001 Beograd, Yugoslavia 
$ Department of Theoretical Chemistry, University of Oxford, Oxford OX1 3TG, UK 

Received 11 December 1987 

Abstract. The formal subdynamics approach to irreversibility in non-equilibrium statistical 
mechanics is cursorily reviewed, emphasis being placed on a recently developed time 
dependent formalism which generalises naturally from isolated systems to systems open 
to external influence. By means of a diagrammatic approach, we apply this theoretical 
framework to begin the study of gases and plasmas evolving in the presence of time 
dependent external fields. The general theorem in the dynamics of correlations is extended 
to include these cases and a corollary is deduced which enables one to eliminate from 
consideration a large class of diagrams in the thermodynamic limit. Finally, we discuss 
briefly same consequences of the formalism which may serve as avenues for the investigation 
of problems of physical interest. 

1. Introduction 

Within the past two decades considerable progress has been made toward a fundamental 
theory of irreversible processes, notably by the Brussels group whose work has recently 
been reviewed in summary fashion (Coveney 1988). This research has shown how 
irreversibility can indeed arise as an intrinsic property of isolated dynamical systems, 
without the need for invoking ‘anthropic arguments or unphysical assumptions’ (Barrow 
and Tipler 1986). 

From the point of view of applications to real systems, the subdynamics theory 
developed by the Brussels group (Prigogine et a1 1973) seems to offer considerable 
possibilities. The concept of subdynamics, originally introduced by Prigogine er a1 
(1973) for large isolated systems, has played a central role in clarifying the relation 
between dynamical and thermodynamic descriptions (George et a1 1972); it has also 
provided a powerful method for the derivation of kinetic equations in non-equilibrium 
statistical mechanics (Balescu 1975). 

A major problem in non-equilibrium statistical mechanics concerns the time evol- 
ution of a large dynamical system interacting with a time dependent external field. By 
generalising the subdynamics concept from that appropriate to isolated systems, Balescu 
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and Misguich (1974a, b, 1975a, b) were able to provide a rigorous justification for the 
use of kinetic equations for plasmas evolving in time dependent external fields under 
well defined initial conditions. This equation contains, as approximations valid under 
differing circumstances, a whole host of special cases: the weak coupling Landau and 
Vlasov equations to all orders in the external field and, for strongly turbulent plasmas, 
the quasilinear stochastic approximations of Kraichnan (1972), Weinstock (1969) and 
Dupree (1966), as well as the Balescu-Lenard equation (Balescu 1975). A subsequent 
development along similar lines was made by Vstovskii (1977). In an unpublished 
thesis, Jowett (1982) continued the investigation of such kinetic equations. 

In this paper, we build on more recent developments in the subdynamics theory 
of ‘open’ systems (where, in the spirit of Penrose (1979), we mean large systems 
evolving in external fields) due to Coveney and George (Coveney and George 1987, 
1988, Coveney 1986,1987a, b), in order to begin consideration of real physical problems. 
The paper is divided as follows. In § 2, we review some aspects of the subdynamics 
theory, with particular emphasis on those elements of importance to the present work. 
Section 3 makes use of a diagrammatic approach to the dynamics of correlations, 
which is cast into the new time dependent formalism. After a statement of the general 
theorem in correlation dynamics for isolated systems in $ 4 ,  we show in $ 5 how these 
techniques may be applied to treat gases and plasmas evolving in inhomogeneous time 
dependent external fields, and we demonstrate that the general theorem in the dynamics 
of correlations may be extended to these cases (§ 5.3). The validity of this theorem is 
important not only in providing a justification for the formal theory, but also from a 
computational standpoint in eliminating a large class of diagrams which are negligible 
in the thermodynamic limit ($  5.4). Finally, in $ 6  we briefly discuss the utility of these 
results for future applications of the theory to concrete physical problems. 

2. The subdynamics approach in non-equilibrium statistical mechanics 

The starting point for non-equilibrium statistical mechanics is the Liouville equation 
for the phase space distribution function p ( q , ,  v i , .  . . , q N ,  vN ; t )  = p (  t )  (or the density 
operator in the quantal case) for an isolated system 

aP i- (2) = Lp(  t )  
a t  

which is to be considered in the thermodynamic limit. This is the limit in which the 
number of particles of any species present ( N )  and the volume (R) both tend to infinity 
in such a way that the density or concentration ( C  = N/R)  remains finite. We shall 
sidestep the formidable mathematical difficulties associated with taking this limit by 
assuming that the pathological initial conditions leading to singular behaviour in p 
are in some sense of zero measure (physically speaking, all intensive properties of the 
system, such as the pressure, reduced distribution functions, etc, are assumed to be 
finite). 

We shall consider a classical gas or plasma consisting of N structureless particles 
in a volume R (although the theory carries over directly to the quantal case at the 
price of increased complexity arising from quantum statistics). Each particle is charac- 
terised by a mass m, and possibly a charge e , ,  its coordinates are q, and its velocity 
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ui. Introducing the following notation: 

we may write the total Liouvillian operator of an isolated system in the perturbative form 

L= Lo+ASL (3) 
where Lo represents the free motion of the N particles, 

and 6L the interactions between them 

SL= i 1 (VIVI,) a, 
1 < I  

A being the coupling constant. The particles are supposed to interact through potentials 
V,, = V((q, - qjl)  which are binary, central and of finite range. As is well known, the 
Coulomb interaction between charged particles in a plasma is effectively rendered of 
finite range due to the collective screening effect. Although out of equilibrium the 
screening mechanism is much more complex than for equilibrium, the dominant 
contributions still come from the many-body ring diagrams (Balescu 1975). 

For a system open to influence from a time dependent external field, the Liouville 
equation becomes 

ia,p( t )  = L ~ (  t ) p (  t ) .  (6) 

The total Liouvillian 

L ~ (  t )  = LS [ s L ~ (  t )  (7) 

where L is the system Liouvillian of (3), has now acquired an explicit time dependence 
by virtue of the external field: the second term represents the system-external field 
interaction 

N N 

S L ~ ( ~ ) =  C ~ ~ : ( t ) = i  1 F i ( q i , u i ;  t ) . a ,  (8) 
i =  1 i = l  

and [ is a coupling constant. In general the external field will be spatially 
inhomogeneous. As an example, for the case of a plasma evolving in an external 
electromagnetic field, F, is the Lorentz force acting on the ith particle: 

E ( % ,  0, ; t )  = - e , {E(q ,  ; t )  + 0' A N q '  ; t )> .  (9) 

These equations represent the same model as that of Balescu and Misguich (1974a). 

2.1. Dynamics of correlations: the ground level 

Now the time evolution of a many-body system can be described very conveniently 
in terms of a dynamics of correlations (Prigogine 1962, Balescu 1963). This description 
of dynamics is the point of departure for the subdynamics approach which is employed 
here. It is the ground level underpinning all of the subsequent theory that we shall 
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develop. There are, however, two slightly different methods used by members of the 
Brussels group. On the one hand, Balescu (1963, 1975) works with a distribution 
vector, the components of which are the reduced distribution functions 
f s (q l ,  u I , .  . . ,4, U,; t ) ,  with 1 G S G  N. On the other hand, in contradistinction to 
Balescu, the approach that we shall adopt, which follows that of Prigogine, George 
and others, is to work directly with the full N-particle distribution function p ( t )  and 
only to go over to the reduced distribution functionsf, at a later stage of the calculation. 
Further discussion of this version of the dynamics of correlations, laying emphasis on 
the important associated diagrammatic techniques, can be found in 0 3. 

However, at this point it will be useful to introduce the complete set of Hermitian 
projection operators { P }  which project out of p ( t )  the vth correlated components 
p , ( t )  in the Fourier representation of the distribution function. The projectors P 
commute with the evolution operator or propagator for the unperturbed motion 

( U )  

I U )  

(10) uO(t - to)  = e-i('-rO)% 

and hence also with Lo: 

I U )  
[ Y, UO] = 0 [ P ,  Lo] = 0. 

2.2. Subdynamics description of isolated sys rems: the Jirst level 

A remarkable result, originally demonstrated by George (1973) for homogeneous 
isolated systems, and later extended to inhomogeneous systems by Skarka and George 
(Skarka 1981, Skarka and George 1983), is that, in the presence of interactions (SL) ,  

one can define a new complete set of non-Hermitian projectors {H} which decompose 
the distribution function into a set of orthogonal subspaces that are invariant under 
the motion. 

Introducing the evolution operator for the system 

U ( t - t o )  =exp[-i(t-to)L] (12) 

d t ) =  U( t - to )p ( to )  (13) 

such that the formal solution to equation ( l ) ,  subject to the initial condition p ( t o ) ,  is 

one may show that H satisfies the following commutation relations: 

[H, U]=O [H, L]=O (14) 

for all Y (cf equation (11)). Thus each component of the distribution function 

evolves independently of the others according to the Liouville equation, and is said 
to obey its own subdynamics. We shall refer to this as the first level of subdynamics. 

If the interactions SL within the system are extinguished, the 'li' projectors reduce 
I D )  

to the corresponding P :  

lim = '3 
SL-0 
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The {f?} exist, provided that certain regularity conditions are satisfied by the 
potential (Balescu 1972, 1975). 

For the construction of the {f?} one needs, however, to make use of two elements 
additional to the dynamics of correlations. The first is a general theorem in the dynamics 
of correlations, applicable to both homogeneous and inhomogeneous systems, which 
indicates what contributions to the v-correlation state of interest are negligible in the 
thermodynamic limit (Henin 1971, Skarka 1978a, b). The second is a suitable analytical 
continuation procedure for this limit, which enables one to handle the remaining 
contributions in a mathematically well defined way when the spectrum of Lo becomes 
continuous. 

In fact, the aforementioned general theorem, which immediately enables one to 
exclude from consideration a large class of diagrams (see § §  3 and 4), is a prerequisite 
for the application of the latter procedure. 

The original approach to the subdynamics decomposition of p ( t )  was based on 
the contour integral solution to the Laplace transform of the Liouville equation (l),  
in which the resolvent ( z  - L)-'  plays a central role. However, since we are concerned 
here with extending the theory to open systems-for which L is time dependent 
(equation (6)) and the resolvent formalism is then inapplicable (see § 2.3)-it is of 
much greater interest to work with an explicitly time dependent formalism. Such a 
formalism has recently been constructed (Coveney 1986, 1987a): it is based on a time 
dependent analytical continuation procedure due to Coveney and George (1987), 
coupled with the general theorem in the dynamics of correlations. We shall not discuss 
the details here, although we shall refer to this procedure repeatedly in the remainder 
of the paper: the reader is therefore urged to consult the references for further 
information. 

2.3. Time dependent subdynamics description of open sys rems: the second level 

Turning to the case of systems interacting with external fields, it has recently been 
shown by using the time dependent formulation of the first level (§ 2.2) that the {f?} 
projectors can be further generalised to define another complete set of non-Hermitian 
time dependent projectors { P (  t ) }  (Coveney 1987b). 

Introducing the evolution operator U"( t ,  to) ,  in terms of which the formal solution 
to equation (6) is written 

( U )  

( v )  
one may show that the { P ( t ) }  obey an intertwining relation with U":  

but they do not commute with L F ( t )  since 

ia,($(t)  = L F ( t ) ( 3 ( t )  - Y ( t ) L F ( t ) .  

p " (  t )  = (Y( t ) p (  t )  

(19) 

It follows from equation (18) that the components 

(20) 
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all independently satisfy the Liouville equation (6) and constitute a generalised (super-) 
subdynamics. We shall refer to this as the second level of subdynamics. 

The { P ( t ) }  exist, subject to the convergence of the time integrals involved, and 
with the proviso that the general theorem in the dynamics of correlations carries over 
to the present case. This latter result is proved for plasmas and gases in § 5 .  It is clear 
that the general theorem must be considered here (rather than simply Henin's theorem 
for homogeneous systems (Henin 1971)) since the external field can itself induce 
inhomogeneities within the system. 

( U )  

3. Dynamics of correlations and inhomogeneities: the diagrammatic approach 

3.1. Isolated systems 

As outlined in 9 2, within the framework of the dynamics of correlations (Prigogine 
1962, Balescu 1963), the evolution of an isolated system is described in terms of the 
change of correlations due to the interactions, with the Liouville equation written in 
the representation of the eigenfunctions of the Liouvillian without interactions, Lo. 
This corresponds to the Fourier expansion of the N-particle distribution function. The 
inhomogeneities as well as the correlations between the particles are associated with 
the wavevectors {ki} in the Fourier coefficients and in the free propagators. In the 
notation of Prigogine (1962), the formal solution of the Liouville equation in the 
interaction representation, written in terms of its convolution form, corresponds to a 
perturbation series with respect to the interactions: 

p{k} ( {u} ;  t )  = 2 ( {k} l  u ( t ) l { k ' } ) p { k ' ) ( { u } ;  0) 
{ k ' }  

where A*B denotes the convolution of A with B, and the general term is given explicitly 
by 

f - ( T l + T 2 + T 3 + '  '+7,,-,) 

U,(t)  = (-i)"A" Jo' dTl IofpT' dT2 Jof-T'-r2 dT3.. . Jo d 7, 

x uo(Ti)sLuo(T2)6Luo(Tj) .  . 6Luo(Tn) 

X 6Luo( t - [ T I  + T 2 f  T3+.  . . + T,,]). (22) 

By { k }  we mean { k , ,  k z ,  . . . , k N }  and similarly for {U}, i.e. the set of wavevectors and 
velocities of the N particles comprising the system. 

Any term arising in the expansion of equation (21) may be evaluated explicitly 
using the following matrix elements (Balescu 1963): 

( { k } ~ ~ o ( ~ i ) ~ { ~ f } ) = e x p ( - i ~ i  j k j .  uj > "  s n = 1 ~ ( k . ~ - k . ~ ' ) ~ ( u . ~ - ~ . * ' )  (23a) 
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which may be readily deduced from equations (4) and (5) together with the fact that 
the particles interact through binary, central potentials. In addition, it should be noted 
that the interaction potential has been transformed to the Fourier representation 

8 7T3 
~ , ( / x ,  - x,l) = - 

0 1  
V, exp[il* (xj - x,)] 

(which is the origin of the factor (l/0) in equation (23b)). 
For inhomogeneous systems the non-vanishing total wavevector K = X i  k, is 

conserved. The system follows what has been called the K dynamics (Skarka and 
George 1983). The vacuum of correlations is then defined by the set of Fourier 
coefficients pK,, with only one vector different from zero and thus equal to K. In the 
diagrammatic formulation of the dynamics of correlations (Skarka 1974), the propa- 
gator for the vacuum of correlations appears as a single line (figure 1). 

Now a correlation of degree n can be created from the vacuum of correlations by 
means of at least n interactions (ASL).  An interaction can be represented diagrammati- 
cally by any one of six different elementary vertices (A-F in figure 2). 

There is a one-to-one correspondence between the terms in the perturbative 
expansion (21) and the diagrams (Balescu 1963). For example, the important case 
known as the cycle shown in figure 3 corresponds to the following algebraic expression: 

Figure 1. The inhomogeneous vacuum of correlations; the label a refers to the particle 
carrying momentum (wavevector) K. 

A B 

-) > K u  

IK-1 la 

I P  I D  

C 

f_l-11._ 

Figure 2. The six elementary vertices for internal interactions. 
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I 

I 
'-"I 

Figure 3. The cycle. 

As discussed in 9 2.2, with each correlation we may associate a corresponding 
subdynamics in the thermodynamic limit (T limit). Coveney and George (1987) have 
given a prescription for doing this, which essentially consists of retaining a convolution 
series for the propagators of the correlation state whose subdynamics is sought, while 
extending the domain of integration of the time intervals associated with all remaining 
propagators to *CO in a systematic way. 

It is important that care be taken not to confuse either the terminology or the 
diagrams with similar ones arising in the quantum field theory of many-particle systems. 
Despite a superficial similarity, the entire philosophy of approach as well as the details 
are quite distinct in the two cases. For example, whereas in quantum field theory the 
term 'vacuum' denotes a state without particles, in the present context it means a state 
without correlations. 

3.2. Formalism in the presence of a time dependent jield 

For a system evolving under the influence of an external time dependent field, the 
formal solution of the Liouville-von Neumann equation (6) is given by a double 
perturbation expansion with respect to both the internal interactions (ASL) and the 
external field (&SLF) (Coveney 1987b), 

Each of the evolution operators U ( t )  given by equations (12) and (21) may be 
decomposed into a complete set of independent subdynamics components (Coveney 
1987a, 9 2.2). Therefore, the dynamics of the system in the second subdynamics level 
(§ 2.3) consists of a series of first-level subdynamics evolutions, which are now, however, 
coupled together by virtue of the external field (the so-called dynamics of kinetic and 
non-kinetic states). 

In the ground level of the dynamics of correlations ( 9  2.1) the evolution appears 
as a series of external field terms (@LF) and particle interactions ( A S L )  separated by 
free evolution propagators. As Balescu and Misguich (1974a) pointed out, in contradis- 
tinction to the internal interaction potential (ASL) the external field ( @LF) acts on 
the particles individually in the same way as the free Liouvillian LO (both being sums 
of single-particle operators, equations (4) and (8)). Therefore, this field cannot modify 
the correlations between particles without internal structure. However, a spatially 
dependent field (e.g. equation (9)) influences the spatial distribution of all particles. 
Hence each term &SLF in the expansion with respect to the external field, equation 
(26 ) ,  modifies the inhomogeneity of the system, as represented by the total wavevector 
K. Consequently the total wavevector K is no longer conserved. The action of the 
external field modifies the total vector K by an amount K',  i.e. it changes the K 
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dynamics into the ( K  - K ’ )  dynamics. In the diagrammatic representation, this corre- 
sponds to the introduction of a new kind of vertex affecting only single lines. The 
vertices are given in figure 4 where, by analogy with the Feynman diagrams of quantum 
field theory, we use a full circle from which a zig-zag tail emanates. 

The vertex G corresponds to a change of inhomogeneity in the system. The special 
cases are the transitions from a non-zero wavevector (inhomogeneous state) to the 
zero wavevector (homogeneous state) and viceversa (vertices H and I in figure 4). 
Following the perhaps unfortunate yet established convention (Balescu 1963), we read 
the diagrams from left to right; thus, in what follows, the final and initial states will 
often be called the ‘starting’ and ‘ending’ states respectively (remember that time is 
taken to increase from right to left in the diagrams). 

3.3. ClassiJication of states with respect to their overall degree 

For later convenience, we now introduce the degree of inhomogeneity I. The homo- 
geneous vacuum of correlations, represented by an absence of lines (zero wavevector), 
corresponds to an inhomogeneity of zero degree. The inhomogeneous vacuum of 
correlations (a single line carrying a non-zero wavevector as in figure 1) has degree of 
inhomogeneity one. Every new line labelled by an independent wavevector K ‘ ,  corre- 
sponding to the introduction of a new inhomogeneity by the external field vertex H, 
increases the degree of inhomogeneity by one. In order to obtain the overall degree 
D of a state in a diagram both the degree of inhomogeneity I and the degree of 
correlation n (see § 3.1) have to be taken into account. In the Fourier representation, 
a state of overall degree D contains D independent wavevectors labelling D lines. A 
state of degree D can have more than D lines if the extra lines are labelled by dependent 
vectors (carrying the same labels as the independent vectors). For instance, in figure 
9 (see later) the third and the fifth states have the same overall combined degree D = 3 
but different numbers of lines. (Notice that an independent vector labelling a line can 
contain several dependent vectorial indices on condition that at least one index is 
independent (e.g. index in in the fifth state of figure 9).)  The magnitude of each 
independent vector in a state of overall degree D is proportional to the inverse volume 
of the system ReD, since it takes at least D vertices to reach this state from the 
homogeneous vacuum (corresponding to either the internal interaction 6L or the action 
of the external field 6LF, both being proportional to a-’). 

3.4. Negligible diagrams: a general criterion 

In order to discover which contributions to the evolution of the various components 
are negligible in the thermodynamic limit, it is necessary to investigate their dependence 
on the volume and the number of particles in the system, i.e. to determine the order 
of magnitude of the corresponding diagram in the form 

2-2 K ,  3 I K - K ’ ) ,  f K’, 

M = 0 + 1 - 1 - 0 = 0  M 5 1*1-1-1=0 M. -1*1-0-0~0 

Figure 4. The three elementary vertices for external field interactions. 
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(see Skarka (1974, 1978a, b) for the case without an external field). Therefore, since 
C is finite in this limit, the value of M has to be determined in order to decide whether 
the contribution of a given diagram is negligible or not. This contribution is obtained 
by summation over all diagrams leading to the final state P { k ) (  t )  from any initial state. 
Hence, for each type of diagram we sum over all independent wavevectors (such as 
1, m and K ‘  in figures 2 and 4) and particles (such as a in the same figures) which do 
not appear in the final state. These are called ‘integrating vectors’, since the summation 
over them becomes an integration in the T limit 

V Skarka and P V Coveney 

x+ ( f l / 8r3 )  dk. 
k 

Each summation thus brings a factor Cl into the expression (26). 
Now our final concern lies in the reduced distribution functions involving a finite 

set {U} of particles. As a consequence, in a vertex one does not sum over ‘named’ 
particles (particles which belong either to {a}  (Greek label) or which are present on 
both sides of the vertex). The summation is performed only over the remaining ‘field’ 
particles (Roman label); each of them introduces a factor N into the formula (27). 
Furthermore, each vertex also introduces a factor l/fl, since it corresponds to the 
Fourier transform of either the internal or the external field interaction energy, as in 
equation (24). Therefore, the value of M in the ratio (27) is determined by the following 
four terms: 

(i)  the difference in overall degree (AD)  between the initial (Do)  and the final state 

(ii) the number of vertices (V) ;  
(iii) the number of integrating wavevectors (a); 
(iv) the number of field particles ( p ) .  

( D r ) ,  A D = D o - D , ;  

It follows that 

M = A D +  V -  CY - p .  (29) 

Thus from (27) an important criterion is obtained concerning the order of magnitude 
of the diagrams (which we shall soon apply to systems evolving in the presence of 
external fields): in the thermodynamic limit, a diagram is negligible if M > 0 and is 
finite if M = O .  

This criterion involves global counting of the additive variables which determine 
M, and can be applied to any diagram. Values of M are given for the diagrams in 
figures 2, 4-8 and 14-16 of this paper. (It has previously been shown in the case of an 
isolated system that M cannot be negative (Skarka 1974), a result which remains valid 
in the present context.) 

Now, in the absence of an external field, for a well defined class of diagrams, a 
general theorem in the dynamics of correlations has been established using this criterion, 
which makes it possible to decide whether or not a diagram is negligible in the T limit 
on the basis of its ‘topological’ properties alone (Skarka 1978a, b). By the topological 
properties of a diagram, we mean those properties relating to the lines (labelled by 
wavevectors) without taking into account their particle labels. The theorem is sum- 
marised in 0 4. In order to avoid having again to construct and evaluate negligible 
diagrams, we shall proceed in 0 5 to extend the general theorem to systems evolving 
in external fields. 
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4. The general theorem in the dynamics of correlations 

The general theorem concerns that class of diagrams in which a wavevector appears 
twice. Reading the diagram from left to right, such a repeating vector is, after its first 
appearance, modified by a vertex denoted V ,  and then, after an arbitrary number of 
dynamical steps, it reappears by means of the vertex V, ,  possibly to be modified once 
again by the vertex V , .  By definition, a vector is modified when some of its vectorial 
indices are removed, when other indices are brought in, as well as when, in a single 
dynamical step, some indices vanish while others are added. 

The theorem states (Skarka 1978a, b) that a diagram with a repeating wavevector 
is negligible in the thermodynamic limit if the following two conditions are fulfilled: 

(i)  the repeating wavevector appears together with some other wavevector to the 
immediate left of the vertex V ,  ; 

(ii) these vectors are connected in the ‘domain’ between the vertices V, and V, .  
The so-called ‘domain’ is demarcated by two vertical lines dividing up the diagram 

in such a way that V ,  stays within it but V, does not. By definition, two wavevectors 
are connected if, starting from the line which is labelled by one vector and following 
the lines in a continuous manner through the diagram, we can reach the line labelled 
by the second vector. An example of such a negligible diagram is given in figure 9 
below, where the vectors ( K  - 1 )  and 1 are connected at the vertex V, .  

The theorem has previously been proved in the case of isolated systems by demon- 
strating that any diagram in the above-mentioned class necessarily contains at least 
one of the four types of negligible fragments shown in figure 5 (Skarka 1978a, b). A 
fragment of a diagram is defined as a domain containing only one vertex. However, 
in order to determine which of the fragments is negligible the diagram has to be 
considered in its totality; whether the summation over a particle label or the integration 
over a wavevector in a fragment is allowed (or forbidden) depends on its absence (or 
presence respectively) on the left-hand side of the fragment considered (see the full 
and the broken line fragments in figures 5 and 7). 

5. Extension of the general theorem in the dynamics of correlations to include time 
dependent external fields 

In this section we proceed to generalise the theorem by first classifying, in 90 5.1 and 
5.2, the negligible fragments which arise from the internal and external field interactions 
respectively. As is often the case with rules derived from diagrammatic perturbation 
theory, the proof in 0 5.3 proceeds via consideration of the various generic properties 
of the diagrams. It will be most comprehensible to the reader who has already developed 
a general familiarity with the rules for evaluation of the orders of magnitude of diagrams 
in correlation dynamics, which are given in their most lucid form by Balescu (1963). 

5.1. Classi$cation of the negligible internal interaction fragments 

The only vertices which introduce a field particle are of the type C, D or E (figure 2). 
These vertices may also reintroduce a lost field particle (see figure 5). Such a particle, 
having already appeared in that part of the diagram to the left of the vertex under 
consideration, reappears as a named particle and we cannot sum over it. Consequently 
the corresponding value of M will be increased (see equation (28)). Such vertices 
belong to the first group of negligible fragments shown in figure 5. 
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Group I 

M=0+1-0-0=1 E 

Group 111 

0; M= 1+1-0-14 

lK - / lm 
(K-/-ml LI 

~ - m l o  

F; M.O+l-O-O=l 

Grmp I1 

Group 1V 

B 1  M.O+1-O-O.l 

Figure 5. The four groups of negligible internal interaction fragments which arise in the 
general theorem. Group IV contains 'mixing on the left' fragments where vertices are 
labelled by triangles (V) .  
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Similarly, a new integrating wavevector is introduced to the right of vertices C, D 
and F only (see vectors I and m in figure 2 ) .  In order to satisfy the requirement 
imposed by momentum conservation (0 3.1), a new vector always appears together 
with its complement at each interaction vertex. If the vector introduced thereby is not 
new but has been lost somewhere to the left of such a vertex, an integration cannot 
be performed over it. Therefore, the fragments containing such non-integrating vectors 
are negligible (group I1 in figure 5). 

Likewise, we cannot integrate over a vector to the right of a vertex if its index 
remains present on the left of the same vertex, as for m and 1 respectively in the 
negligible fragments Dj, FS of group 111 in figure 5. 

A third reason for neglecting a fragment occurs when, to the left of the vertex, a 
dependent integrating vector of the irreducible subcorrelation replaces an independent 
integrating vector in the corresponding non-negligible reference fragment. (An irreduc- 
ible subcorrelation is a homogeneous correlation such that all partial summations of 
its vectors are non-zero (e.g. -1  and I of Bk in figure 5 ) . )  The vector becomes dependent 
since its complementary vector in the irreducible subcorrelation is always independent 
when it labels a propagation line. This happens when, to the left of the vertex in a 
fragment, a line of an irreducible subcorrelation is connected at the vertex with one 
of the remaining lines (Henin 1971). Such a mixing on the left corresponds to the 
fourth group of negligible fragments (vertices labelled with a triangle; group IV in 
figure 5). 

Conversely, however, when a line of an irreducible subcorrelation on the right of 
the vertex joins a remaining line at the vertex, the corresponding mixing on the right 
does not make the fragment negligible. Indeed, the missing integrating vector is 
compensated for by a decrease in the initial overall degree (the values of Do and (Y 

for the fragments in figure 6 ,  depending upon the same vector, occur with opposite 
sign in equation ( 2 8 ) ) .  

M = O+l-0-1 :o M = O + l - O - l ~ o  M = l + l - 0 - 0 = 0  

Figure 6. ‘Mixing on the right’ fragments; vertices are labelled by squares (0). 

5.2. Classijication of the negligible external j e l d  fragments 

In order to extend the general theorem, the new kind of vertices arising due to the 
external field (figure 4) must also be studied. 

By analogy with the preceding section, four groups of negligible fragments contain- 
ing external field vertices can be identified using the general criterion enunciated in 
§ 3.4 (see figure 7). 
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Group I11 Group I V  

(K-d), f K ,  ( -RIm 2 ( K - R I ,  

RP 

M =0+1-0-0:1 M = l + l - l - O z l  
i 

To the first group belong the fragments with the vertex H (see figure 4) in which 
a particle lost somewhere to the left of the vertex is reintroduced instead of a field 
particle as in figure 6. 

The reappearance of a lost wavevector in place of an integrating one is the reason 
why the fragments in the second group are negligible. Notice that, in contradistinction 
with the interaction vertex, the external field vertex always introduces an inhomogeneity 
vector without its complement, thereby changing the total wavevector (momentum is 
no longer conserved within the system). 

The third group of negligible fragments results from the fact that we cannot integrate 
over an inhomogeneity vector to the right of the vertex if its vectorial index is also 
present on the left. 

The fragments of the fourth group do not participate in ‘mixing’ because the external 
field vertices never involve more than one particle and, therefore, never more than one 
line. However, as in the ‘mixing on the left’ fragments of figure 6 ,  an irreducible 
subcorrelation on the left of the vertex disappears on its right. By virtue of the presence 
of the dependent vector in the subcorrelation, the value of D, in (28) decreases, thereby 
increasing the value of M. 

By contrast, note that the mirror image of a fragment from the fourth group in 
figure 7 is not negligible since the subcorrelation is on the right of the vertex, as in 
the ‘mixing on the right’ fragments of figure 6 (see figure 8). 

~~ 

I Group I I Group I 1  

I I M = 0 + 2 - 1 - 0 = 1  M = Oc2 -0-151 

Figure 7. The four groups of negligible external field interaction fragments which arise in 
the extension of the general theorem. 

(K -R I ,  ( -R la 

Rn 

Figure 8. External field analogue of internal ‘mixing on the right’ fragments (see figure 6 ) .  
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5.3. Proof of the extended theorem 

The theorem holds trivially when the repeating wavevector is modified by the elimina- 
tion of some of its indices at the vertex V I ,  which can be either an interaction vertex 
(e.g. DS and F1, in figure 5 and B in figure 2) or an external field vertex G (in figure 
4). Special cases arise when the repeating vector is lost, as in the vertex I (figure 4), 
or eliminated, when its exact complement is introduced via the interaction vertex A. 
Consequently, the vertex V2, which in the former case reintroduces one index of the 
repeating vector and in the latter case the whole vector, necessarily belongs to the 
second group of negligible fragments (figures 5 and 7 ) .  

Hence, only the modification of the repeating vector by the addition of another, 
different, vectorial index needs further consideration. Moreover, the theorem 
manifestly holds if the starting fragment is already negligible since it then belongs to 
the fourth group. 

To modify the repeating vector the vertex V, must be of the type G, B, D or F. 
(Indeed the vertices C and H introduce a new vector which alone labels its line, while 
the vertex E, which leaves the vector unchanged, may also be omitted from consider- 
ation.) The repeating vector is modified by adding either an inhomogeneity vector 
using external field vertex G or a correlation vector via one of the interaction vertices 
B, D or F. Since the repeating vector is modified by the addition of a different 
wavevector, it can reappear at the vertex V2 only if the added vector is removed either 
by separation or by elimination. At an interaction vertex, a vector is either separated 
from the others or eliminated in conjunction with its complement. An added 
inhomogeneity vector can be eliminated by a field vertex (of type I in figure 4). 

Our intention is to show that the connection of a repeating vector with another 
starting vector prohibits the subsequent reappearance of the repeating vector if the 
diagram is not to contain any negligible fragments. 

With this in mind, let us consider first a starting fragment with a vertex V, of type 
D, followed by interaction fragments which merely serve to fix the topological properties 
of the diagram. The repeating vector is modified by adding a correlation vector (-m), 
which is introduced at VI together with its complement m (see figure 9). 

I I 

I I 
I 2 3 4 State 1 

Block I1 L - - - L  - _ _ _  I - - - -  L - - - L  
I 

I 
5 1 6  
- - - -  

Obviously, the D-type vertex cannot connect the repeating vector ( ( K  - I )  in figure 
9) with another vector ( I )  appearing on the left of V I .  As a consequence, each of them 
belongs to a separate block. A block is a part of a diagram disconnected from other 
parts in a given domain, and is delineated (as in figure 9) by broken horizontal lines 
(see Skarka 1985). 
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The repeating vector reappears at the vertex V2 only if the added vector ( - m )  is 
either separated or eliminated. But the separation of a vector as well as its elimination 
without the simultaneous introduction of a novel vector both lead to the loss of one 
momentum integration (see, for example, the fragments DS and F; in figure 5 ) .  
Therefore, such fragments belong to the third group of negligible fragments, except 
when an irreducible subcorrelation is created causing a ‘mixing on the right’ (figure 
6). Such a mixing on the right appears when the separation occurs inside the block 
of the repeating vector (see figure 9). In this block the sum of vectors is equal to the 
repeating vector, provided that all other vectors are introduced together with their 
complements (their sum is zero). For the same reason, inside the block the complement 
m can be separated from the other vectorial indices via a ‘mixing on the right’ fragment 
and thus can be found labelling a line by itself. Only in conjunction with its complement 
m alone on a line can the added vector ( - m )  be eliminated in a non-negligible fragment 
V2 of type B. Therefore, by this procedure of either separation or elimination of 
vectorial indices, the repeating vector may reappear in its block either alone or in the 
presence of an irreducible subcorrelation and in so doing it avoids giving rise to any 
negligible fragments. 

Now, in order to satisfy the conditions stipulated by the theorem, let us suppose 
that the repeating vector ( K  - I )  is connected with the starting vector ( I )  originating 
from another block. When ( K - I )  reappears it cannot be connected by itself with a 
vector of the second block since it would be modified once again and the connection 
vertex V, would then coincide with V3, Such an occurrence is excluded from consider- 
ation by the theorem. Let us thus make the connection with the other block between 
V2 and V3, via a vector belonging to the remaining subcorrelation (figure 9). It then 
involves a ‘mixing on the left’ fragment which belongs to the fourth group of negligible 
fragments in figure 5 .  (Notice that the subcorrelation persists between the ‘mixing on 
the right’ and the ‘mixing on the left’ fragments, or their analogues for the external 
field vertex (V, and V, in figure 9).)  

In order to avoid a negligible ‘mixing on the left’ fragment, the subcorrelation can 
now be destroyed by an external field vertex, which introduces an inhomogeneity 
vector (as in figure 9). But the external field vertex does not change the topology of 
the diagram; rather it converts a dependent vector into an independent one and such 
a fragment also belongs to the fourth group of negligible fragments (in figure 7) .  

Let us now examine the possible connections which can be made between vertices 
VI and V2. In the first case, the separation of some vectorial indices is performed in 
a ‘mixing on the right’ fragment in order to prepare for the reappearance of the 
repeating vector before the connection (V,) occurs (as in figure 10). Therefore, if one 
of the lines associated with the previously created subcorrelation participates at the 
vertex V, it mixes with a vector of the second block, which renders the diagram 
negligible as in the preceding example. Otherwise, if one of the remaining vectors 
(e.g. the modified repeating vector ( K  - 1 - m )  or the complement m of the added 
vector in figure 10) is connected with a vector of the second block, the effect of the 
previous separation is lost, and a ‘parasite’ vector has to be removed. Such a situation 
is then similar to the second case, discussed below, where the connection is performed 
without any preceding preparative separation. 

In the second case, the starting fragments B and F can be treated together with the 
starting fragment D (e.g. as in figure 11). (Indeed, the vertices B and F not only modify 
the repeating vector but also connect it directly with some other vector of the starting 
state and the two blocks soon merge into one.) The repeating vector modified by 
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Figure 10. See text for discussion. 

Figure 11. See text for discussion. 

adding a vector (e.g. -m in figure 2) reappears at the vertex V2 only if the added 
vector is either separated or eliminated. However, the separation of the added vector 
(e.g. see the fragment Dj in figure 5 )  and its elimination in conjunction with its 
complement m which is not alone on a line (e.g. in figure 11) both involve a negligible 
fragment of the third group. 

As shown above, the vertex V2 can escape negligibility either when, before its 
elimination, the complement m labels a line by itself, or when the separation is done 
through a ‘mixing on the right’ fragment (see D5 in figure 6). However, both such 
variants demand as a prerequisite another separation, namely that of the complement 
m (in figure 12), but such a separation can only be made via a fragment of the third 
group which renders this contribution negligible. 

In a previous case (see figure 9), any separation in the block of the repeating vector 
corresponded to mixing on the right, since a subcorrelation could be created. Here, 
in contradistinction, there is no block for the repeating vector by virtue of the connec- 
tion; the parasite vectorial index originating in the other block prevents the appearance 
of a subcorrelation, leading to a fragment of the third group. Notice that with B as 

4 - 0; 
I 11 111 

lK- l iu 

v, I V ,  ( -mio 

[ K-I-mi, 

mT 
l l + m i ,  

I C  

Figure 12. See text for discussion. 
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the starting fragment (in figure 12), the starting vector (-m) has a dual role: it joins 
and modifies the repeating vector. Its complement m can be alone on a line, but then 
it forms with (-m) an  irreducible subcorrelation and  consequently the vertex V, is 
already mixing on the left. Hence, this particular situation is not considered from the 
outset. 

In each separation or  elimination, a new vector can be simultaneously added, which 
makes the fragment non-negligible. Nonetheless, in order to admit the reappearance 
of the repeating vector, this new vector has to be removed in one of the subsequent 
dynamical steps through a negligible fragment (as in figure 13). 

Finally, let us consider the case where the field vertex G modifies the repeating 
vector by adding an  inhomogeneity vector K ' .  The repeating vector can only reappear 
when this vector K'  is either eliminated using another field vertex G' (figure 14), or 
separated by means of an  interaction vertex of type D (figure 15), both of which, 
however, belong to the third group of negligible fragments. It has already been noted 
that the fragment D can remain finite in two different circumstances. The first one is 
when D becomes a 'mixing on the right' fragment, i.e. when on its left the exact 
complement K' of the added vector (-IC') is introduced by a vertex H (as in figure 
15). However, now the latter vertex belongs to the second group of negligible fragments, 
since K' is not an  integrating wavevector. A second circumstance in which the fragment 
D is non-negligible occurs when, in the separation, a new vector and its complement 
can be simultaneously added. However, once more the new wavevector has to be 
removed subsequently, with the consequence that the contribution is again negligible. 

I 

lK- l )a  f - njC 

Figure 13. See text for discussion. 

K a  (K- K' 5 Ka - 
M : 0 * 2 -  1 -0 51 

Figure 14. See text for discussion. 

KO 
K O  ( K - K ' ) ~  

I-KO, 

5 KC 

M 1+3-1-2: 1 

Figure 15. See text for discussion. 
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All the diagrams of the above class remain negligible even when an arbitrary number 
of external field fragments are incorporated, since the change in the diagrams only 
involves vectorial indices on the lines: in short, the topology of the diagram remains 
unchanged. 

We have thus shown that a connection between the repeating vector and another 
starting vector (i.e. between their respective blocks), in the domain between the vertices 
VI and V3, makes the diagram negligible even when external field fragments are 
included. Therefore, the general theorem holds for systems evolving in time-dependent 
external fields. 

Only the topology of the wavevectors is relevant in the theorem. Therefore, the 
diagrams considered for the theorem all contain negligible external field and/or 
interaction fragments of the second, third or fourth group. Furthermore, since in a 
diagram a lost particle can be reintroduced through either an external field or an 
internal interaction fragment of the first group, the scope of the theorem may be 
enlarged by the following statement. 

A diagram is negligible if a field particle is lost and afterwards reintroduced. 
A further extension of the theorem is afforded by reconsideration of those cases 

involving external field vertices which have already been investigated for the purpose 
of demonstrating the theorem itself. Note that, when introduced into a diagram, the 
external field either modifies a vector on an existing line, thereby changing the total 
vector of the corresponding block (see figure 9),  or creates a new line and hence a 
new block. 

In the former case, even if the inhomogeneity vector introduced by the field does 
not modify the repeating vector but another one instead, it still has to be removed. 
Indeed, this vector prohibits the reappearance of the repeating vector via non-negligible 
fragments either directly (as in figure 16) or indirectly, by destroying an irreducible 
subcorrelation or preventing its creation. In fact, any external field vertex has the same 
effect as a connection vertex (VJ, since it introduces a parasite inhomogeneity vectorial 
index. This additional vectorial index has to be either eliminated, using a negligible 
fragment (as in figure 14), or separated. In both cases this can only be done via a 
negligible fragment. 

(K-1-m), (K-1 

, 

M=1+3-1-1=1 
Figure 16. See text for discussion. 

Therefore, the mere presence of a single external field fragment in the block of a 
repeating vector-even without any connection with other blocks-renders the diagram 
negligible. 

The theorem can thus be extended by adding the following statement to the previous 
formulation. 

A diagram without any connection is also negligible if at least one external field 
vertex appears in the block of a repeating vector in the domain between the vertices 
V, and V2. 
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5.4. Corollary of the theorem 

The following corollary of the theorem may now be stated. 

if any one of the following conditions is fulfilled. 

its first and second appearance. 

vector of the repeating state. 

A diagram in which a state appears twice is negligible in the thermodynamic limit 

(i) Two vectors of the repeating state are mutually connected in the domain between 

(ii) At least one external field vertex appears in the block associated with one 

(iii) A field particle is lost and afterwards reintroduced. 
Using this corollary, one can immediately eliminate not only all diagrams involving 

diagonal transitions from a state (of given degree) to itself, provided at least one of 
the intermediate states is of equal or lower degree (a case which could be disregarded 
altogether for homogeneous systems using Henin's theorem (Henin 1971)), but also 
some diagrams with intermediate states of a higher degree (Skarka 1978a, b). In this 
way an important result is obtained. 

In the thermodynamic limit, diagrams with a repeating state have to be retained if 
and only if, in the domain between the first and second appearance of a repeating 
state, they are split into at least as many blocks as there are lines in the repeating 
state-each block containing at most one of the lines belonging to the repeating 
state-and provided that, in the blocks containing a line of the repeating state, there 
is no external field vertex. 

Therefore, in the domain between state repetition, particles of one block do not 
interact with particles of any other block. In addition, an external field vertex can 
only appear in a block with no line belonging to the. repeating state. 

Block 

Considered 

Figure 17. An example of a diagram whose contribution is finite in the thermodynamic limit. 
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separately such a block begins with the homogeneous vacuum of correlation states 
and ends in the same way (see figure 17). 

6. Conclusion 

The theorem which we have now established, on the basis of the topological properties 
of the diagrams, is of importance for a variety of interconnected reasons. 

As noted in 90 2.2 and 2.3, the theorem is a prerequisite for the application of the 
analytical continuation procedure of Coveney and George (1987), which in turn leads 
into the subdynamics decomposition for dissipative systems in the thermodynamic 
limit. It therefore completes the formal aspects of the subdynamics theory for systems 
of structureless particles evolving in spatially varying time dependent external fields 
(Coveney 1987). 

In the case of (spatially) uniform external fields, it is obvious that Henin’s theorem 
(Henin 1971) for homogeneous systems is sufficient, because then the system-field 
interaction @ L F  is diagonal in the correlation states {Iv)} (the eigenfunctions of Lo) 
and plays no role in the dynamics of correlations. 

The situation is quite different when the field is inhomogeneous however, since 
then the interaction @ L F  induces transitions between states of diff ering overall degree. 
For the successful application of the analytical continuation procedure, we require 
that all diagonal transitions involving intermediate states of equal overall degree be 
negligible in the T limit. The general theorem-and in particular its corollary ( 0  5.4)- 
guarantees that this condition is met. In addition, all diagrams containing intermediate 
states of a lower overall degree, as well as some with intermediate states of a higher 
degree, are also negligible. 

Beyond completing the formal theoretical development outlined in 0 2, it should 
be noted that the general theorem established herein is also a necessary condition for 
the so-called dynamical factorisation of the subdynamics evolution superoperators 
(Skarka 1985, 1987). This factorisation leads to a considerably simplified description 
of irreversible processes in gases and plasmas, which has already been exploited for 
the treatment of isolated inhomogeneous gases (Skarka 1985). 

Furthermore, explicit formal solutions of the non-linear Vlasov equation describing 
inhomogeneous collisionless plasmas have been obtained using subdynamics (Skarka 
and George 1984). The method is effectively a generalisation of that due to van Kampen 
(1955, 1957) and Case (1959) for the linearised version of the Vlasov equation. We 
hope to return in the future with a consideration of the more complex situation which 
pertains in the presence of time dependent external fields, a problem of central interest 
in the context of plasma physics. 
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